
Deep Learning

April 25, 2023

1 Deep Learning methods and Neural Networks
Universal approximation theorem: A continuous function can be approximated to an arbitrary
accuracy if one has at least one hidden layer with finite number of neurons in neural network. The
non-linear/activation function can be sigmoid (fermi) [Cybenko in 1989], or just general nonpoly-
nomial bounded activation function [Leshno in 1993 and Pinkus in 1999].

The multilayer architecture of NN gives neural networks the potential of being universal approxi-
mators.

Given a function 𝑦 = 𝐹(𝑥) with 𝑥 ∈ [0, 1]𝑑 and 𝑓(𝑧) is a non-linear bounded activation function
and 𝜖 > 0 is chosen accuracy, there is a one layer NN with 𝑤 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑛 and 𝑥 ∈ ℝ𝑚 and
𝑧𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗 so that | ∑𝑖 𝑤(2)

𝑖𝑗 𝑓(𝑧𝑖) + 𝑏𝑗 − 𝐹(𝑥𝑗)| < 𝜖.
Conceptually, it is helpful to divide neural networks into four categories: 1. general purpose neural
networks for supervised learning,

2. neural networks designed specifically for image processing, the most prominent example of
this class being Convolutional Neural Networks (CNNs),

3. neural networks for sequential data such as Recurrent Neural Networks (RNNs), and

4. neural networks for unsupervised learning such as Deep Boltzmann Machines.

In natural science, DNNs and CNNs have already found numerous applications. In statistical
physics, they have been applied to detect phase transitions in 2D Ising and Potts models, lattice
gauge theories, and different phases of polymers, or solving the Navier-Stokes equation in weather
forecasting. Deep learning has also found interesting applications in quantum physics. Various
quantum phase transitions can be detected and studied using DNNs and CNNs, topological phases,
and even non-equilibrium many-body localization. Representing quantum states as DNNs quantum
state tomography are among some of the impressive achievements to reveal the potential of DNNs
to facilitate the study of quantum systems.

Figure: Sketch of the neural network, the input layer is on the left (𝑥𝑖 = 𝑎(0)
𝑖) and the output layer

(𝑎(𝐿)
𝑖). The latter is compared through the cost function with the target 𝑡𝑖. The layers between 0

and 𝐿 are called hidden layers, which increase flexibility of the network. 𝑓(𝑧) is nonlinear activation
function.

An artificial neural network (ANN), is a computational model that consists of layers of connected
neurons (sometimes called nodes or units).

1

The equations are sketched in the figure, and in matrix form read:

z𝑙 = (a𝑙−1)w𝑙 + b𝑙 (1)
𝑎𝑙

𝑖 = 𝑓(𝑧𝑙
𝑖) (2)

Here 𝑙 in 𝑎𝑙
𝑖, 𝑧𝑙

𝑖 stands for the layer 𝑙. Using input parameters 𝑎𝑙−1 in layer 𝑙 we get output 𝑧𝑙, which
are than passed through a non-linear activation function 𝑓 to obtain 𝑎𝑙. This in turn allowes one
to calculate the next layer. Note that we used many yet to be determined weights 𝑤 and 𝑏, which
are determined so that they best fit the known data, i.e., on input 𝑥𝑖 give as good approximation
to target 𝑡𝑖 as possible.

We start with input 𝑥𝑖, which defines the first layer 𝑎0, and we end with output layer 𝑎𝐿, which
delivers the output, and is needed to evaluate the cost function:

𝑎0
𝑖 ≡ 𝑥𝑖 (3)

𝐶({𝑤, 𝑏}) = 1
2 ∑

𝑖
(𝑎𝐿

𝑖 − 𝑡𝑖)2 (4)

The target 𝑡 is the known data we train on, which was called 𝑦 in the linear regression. To compare
with linear regression ̃𝑦 is the output layer 𝑎𝐿

𝑖 .

NN is supposed to mimic a biological nervous system by letting each neuron interact with other
neurons by sending signals in the form of mathematical functions between layers. A wide variety
of different ANNs have been developed, but most of them consist of an input layer, an output layer
and eventual layers in-between, called hidden layers. All layers can contain an arbitrary number of
nodes, and each connection between two nodes is associated with a weight variable 𝑤𝑖𝑗 and 𝑏𝑖.

Withouth the nonlinear activation function NN would be equivalent to the linear regression (con-
vince yourself). The added nonlinearity through activation function 𝑓 is thus crucial for the success
of NN. Many choices of activation functions are in use. We mention just a few: * sigmoid (fermi)
𝑓(𝑧) = 1/(𝑒−𝑧+1) * rectified linear unit (Relu) 𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧) * tanh(𝑧), which is related to fermi
by tanh(𝑧/2) = 𝑓(−𝑧) − 𝑓(𝑧) * Exponential linear unit (Elu): 𝑓(𝑧) = if(𝑧 < 0)(𝛼(𝑒𝑡𝑧 − 1)else(𝑧)
with 𝑧 ≪ 1 * Leaky Relu : 𝑓(𝑧) = if(𝑧 < 0)(𝛼𝑧)else(𝑧) with 𝑧 ≪ 1

1.0.1 Simple example OR and XOR gate

As we will show, the OR gate can be easily fit with linear regression, however, XOR gate can not
be, and requires at least one hidden layer.

Figure: OR and XOR gate with line that can or can not describe it.

The OR gate
𝑥1 𝑥2 𝑡
0 0 0
0 1 1
1 0 1
1 1 1

(5)

2

and XOR gate
𝑥1 𝑥2 𝑡
0 0 0
0 1 1
1 0 1
1 1 0

(6)

Let’s try linear regression. The design matrix should contain a constant and linear term, i.e.,
𝑋𝑇 = [1, 𝑥1, 𝑥2], which is

𝑋 =
⎡
⎢⎢
⎣

1 0 0
1 0 1
1 1 0
1 1 1

⎤
⎥⎥
⎦

(7)

and linear regression gives ̃𝑦 = 𝑋𝛽 = 𝑋(𝑋𝑇 𝑋)−1𝑋𝑇 𝑦.
It is easy to check that for 𝑦𝑇

𝑂𝑅 = [0, 1, 1, 1] we get 𝑋(𝑋𝑇 𝑋)−1𝑋𝑇 = [1/4, 3/4, 3/4, 5/4] while for
𝑦𝑇

𝑋𝑂𝑅 = [0, 1, 1, 0] we get 𝑋(𝑋𝑇 𝑋)−1𝑋𝑇 = [1/2, 1/2, 1/2, 1/2]. If we assume that ̃𝑦𝑖 < 1/2 means
0 and ̃𝑦𝑖 > 1/2 is 1, we reproduce OR get, but clearly fail at XOR.

As we will show below, one hidden layer can easily give XOR gate. A small technicality first:
In the linear regression we wanted to have a constant allowed in the fit, hence our 𝑋𝑇 started
with unity (to allow 𝛽0 as constat). In ML we always add constant explicitely as an additional
degree of freedom (see equations above), hence 𝑋𝑇 doe not need to have unity, and it will just be
𝑋𝑇 = [𝑥1, 𝑥2]. More precisely

𝑋 =
⎡
⎢⎢
⎣

0 0
0 1
1 0
1 1

⎤
⎥⎥
⎦

(8)

For the activation function 𝑓(𝑧) we will choose Relu: 𝑓(𝑧) = 𝑚𝑎𝑥(𝑧, 0).
We will choose two neurons in the hidden layer, hence 𝑤ℎ is 2𝑥2 matrix and 𝑏ℎ is two component
vector, in terms of which zℎ = Xwℎ + bℎ, aℎ = 𝑓(zℎ), and the output y ≡ a𝑜 = a(ℎ)w𝑜 + b𝑜

The minimization would give the following weights

wℎ = [1 1
1 1] (9)

bℎ = [0 −1] (10)

w𝑜 = [1
−2] (11)

b𝑜 = 0 (12)

3

Which means that

zℎ =
⎡
⎢⎢
⎣

0 −1
1 0
1 0
2 1

⎤
⎥⎥
⎦

(13)

aℎ =
⎡
⎢⎢
⎣

0 0
1 0
1 0
2 1

⎤
⎥⎥
⎦

(14)

and finally

aℎw𝑜 =
⎡
⎢⎢
⎣

0
1
1
0

⎤
⎥⎥
⎦

(15)

which is identical to target 𝑡 for XOR gate, and concludes our example.

To solve NN problem we usually distinguish between the following steps: 1) The feed forward
stage: which randomly initialized weights and biases to produces an output a𝐿 to be used in the
cost function, and compares with the target t. 2) Back propagation stage follows in which one
calculates the gradients of weights w and biases b. Using minimization algorithm we find the local
minimum that corresponds to the given randomly chosen weights and biases. 3) We repeat the two
steps (1) and (2) until the error of the cost function is acceptable.

1.1 Back propagation and automatic differentiation
It is convenient to differentiate from the end of the NN towards the start, hence we call this back
propagation. We start with differentiation the cost function

𝐶({𝑤, 𝑏}) = 1
2 ∑

𝑖
(𝑎𝐿

𝑖 − 𝑡𝑖)2,

which gives
𝜕𝐶

𝜕𝑤𝐿
𝑗𝑘

= ∑
𝑖

(𝑎𝐿
𝑖 − 𝑡𝑖)

𝜕𝑎𝐿
𝑖

𝑤𝐿
𝑗𝑘

𝜕𝐶
𝜕𝑏𝐿

𝑗
= ∑

𝑖
(𝑎𝐿

𝑖 − 𝑡𝑖)
𝜕𝑎𝐿

𝑖
𝑏𝐿

𝑗
(16)

because 𝑎𝐿
𝑖 = 𝑓(𝑧𝐿

𝑖), we have

𝜕𝐶
𝜕𝑤𝐿

𝑘𝑗
= ∑

𝑖
(𝑎𝐿

𝑖 − 𝑡𝑖)𝑓 ′(𝑧𝐿
𝑖)𝜕𝑧𝐿

𝑖
𝑤𝐿

𝑘𝑗

𝜕𝐶
𝜕𝑏𝐿

𝑗
= ∑

𝑖
(𝑎𝐿

𝑖 − 𝑡𝑖)𝑓 ′(𝑧𝐿
𝑖)𝜕𝑧𝐿

𝑖
𝑏𝐿

𝑗
(17)

finally 𝑧𝐿
𝑖 = ∑𝑗 𝑎𝐿−1

𝑗 𝑤𝑗𝑖 + 𝑏𝑖, hence

𝜕𝑧𝐿
𝑖

𝑤𝐿
𝑘𝑗

= 𝑎𝐿−1
𝑘 𝛿𝑖𝑗 (18)

𝜕𝑧𝐿
𝑖

𝑏𝐿
𝑗

= 𝛿𝑖𝑗 (19)

4

which finally gives

𝜕𝐶
𝜕𝑤𝐿

𝑘𝑗
= (𝑎𝐿

𝑗 − 𝑡𝑗)𝑓 ′(𝑧𝐿
𝑗)𝑎𝐿−1

𝑘 (20)

𝜕𝐶
𝜕𝑏𝐿

𝑗
= (𝑎𝐿

𝑗 − 𝑡𝑗)𝑓 ′(𝑧𝐿
𝑗) (21)

Next we define the quatity
𝛿𝐿

𝑗 ≡ (𝑎𝐿
𝑗 − 𝑡𝑗)𝑓 ′(𝑧𝐿

𝑗)
in terms of which we can express

𝜕𝐶
𝜕𝑤𝐿

𝑘𝑗
= 𝛿𝐿

𝑗 𝑎𝐿−1
𝑘 (22)

𝜕𝐶
𝜕𝑏𝐿

𝑗
= 𝛿𝐿

𝑗 (23)

Note that 𝛿𝐿
𝑗 can also be viewed as

𝛿𝐿
𝑗 = 𝜕𝐶

𝜕𝑎𝐿
𝑗

𝜕𝑎𝐿
𝑗

𝜕𝑧𝐿
𝑗

= 𝜕𝐶
𝜕𝑧𝐿

𝑗

We then proceed to previous layer, and obtain

𝜕𝐶
𝜕𝑤𝐿−1

𝑘𝑗
= ∑

𝑖,𝑛

𝜕𝐶
𝜕𝑎𝐿𝑛

𝜕𝑎𝐿
𝑛

𝜕𝑧𝐿𝑛

𝜕𝑧𝐿
𝑛

𝜕𝑎𝐿−1
𝑖

𝜕𝑎𝐿−1
𝑖

𝜕𝑧𝐿−1
𝑖

𝜕𝑧𝐿−1
𝑖

𝜕𝑤𝐿−1
𝑘𝑗

(24)

We then note that
𝜕𝐶
𝜕𝑎𝐿𝑛

𝜕𝑎𝐿
𝑛

𝜕𝑧𝐿𝑛
= 𝛿𝐿

𝑛

and because 𝑧𝐿
𝑛 = ∑𝑖 𝑎𝐿−1

𝑖 𝑤𝐿
𝑖𝑛 + 𝑏𝐿

𝑛 we have

𝜕𝑧𝐿
𝑛

𝜕𝑎𝐿−1
𝑖

= 𝑤𝐿
𝑖𝑛

furthermore
𝜕𝑎𝐿−1

𝑖
𝜕𝑧𝐿−1

𝑖
= 𝑓 ′(𝑧𝐿−1

𝑖)

and further 𝑧𝐿−1
𝑖 = ∑𝑘 𝑎𝐿−2

𝑘 𝑤𝐿−1
𝑘𝑖 + 𝑏𝐿−1

𝑖 so that

𝜕𝑧𝐿−1
𝑖

𝜕𝑤𝐿−1
𝑘𝑗

= 𝑎𝐿−2
𝐾 𝛿𝑖𝑗

so that collecting all of that leads to

𝜕𝐶
𝜕𝑤𝐿−1

𝑘𝑗
= ∑

𝑖,𝑛
𝛿𝐿

𝑛 𝑤𝐿
𝑖𝑛𝑓 ′(𝑧𝐿−1

𝑖)𝛿𝑖𝑗𝑎𝐿−2
𝑘 = ∑

𝑛
𝛿𝐿

𝑛 𝑤𝐿
𝑗𝑛𝑓 ′(𝑧𝐿−1

𝑗)𝑎𝐿−2
𝑘

5

Now we will require that
𝜕𝐶

𝜕𝑤𝑙
𝑘𝑗

= 𝛿𝑙
𝑗𝑎𝑙−1

𝑘 (25)

which gives us the following expression

𝛿𝐿−1
𝑗 = ∑

𝑛
𝛿𝐿

𝑛 𝑤𝐿
𝑗𝑛𝑓 ′(𝑧𝐿−1

𝑗) (26)

We can verify that this equation connects every layer with the previous layer, i.e., this equation is
valid for every 𝑙, not just 𝐿 − 1. Similarly we can show that the derivative with respect to 𝑏 has
the same form, namely,

𝜕𝐶
𝜕𝑏𝑙

𝑗
= 𝛿𝑙

𝑗 (27)

In conclusion, we just showed that the automatic differentiation in back propagation leads to the
following set of equations

𝜕𝐶
𝜕𝑤𝑙

𝑘𝑗
= 𝛿𝑙

𝑗𝑎𝑙−1
𝑘 (28)

𝜕𝐶
𝜕𝑏𝑙

𝑗
= 𝛿𝑙

𝑗 (29)

in which 𝛿𝑙
𝑗 can be all obtained by the following recursion relation

𝛿𝑙
𝑗 = ∑

𝑛
𝛿𝑙+1

𝑛 𝑤𝑙+1
𝑗𝑛 𝑓 ′(𝑧𝑙

𝑗) (30)

and the starting condition

𝛿𝐿
𝑗 = (𝑎𝐿

𝑗 − 𝑡𝑗)𝑓 ′(𝑧𝐿
𝑗) (31)

1.1.1 Final algorithm

1) Initialize all variables to be minimized {𝑤, 𝑏} and perform the forward pass to compute all 𝑎𝑙

parameters.
2) With current values of {𝑤, 𝑏} and 𝑎𝑙 we compute all gradients 𝜕𝐶

𝜕𝑤𝑙
𝑘𝑗

and 𝜕𝐶
𝜕𝑏𝑙

𝑗
and using one

of the available minimization routines we take a step towards more optimal variables {𝑤, 𝑏}.
Usually one uses some type of gradient descent method, as discussed previously

𝑤(𝑗+1) = 𝑤(𝑗) − 𝛾𝑗
𝜕𝐶

𝜕𝑤(𝑗)

here 𝑗 stands for the iteration.
3) We repeat (1) and (2) until we find local minima
4) We change hiperparameter or change initial condistions to try finding different local minima.

1.1.2 Example code from MNIST dataset on handwritten numbers

We will develop NN code to recognize the handwritten digits. The data is stored in MNIST dataset,
which is included in sklearn.

6

[1]: from numpy import *
import matplotlib.pyplot as plt
from sklearn import datasets

ensure the same random numbers appear every time
random.seed(0)

display images in notebook
%matplotlib inline
plt.rcParams['figure.figsize'] = (12,12)

download MNIST dataset
digits = datasets.load_digits()

define inputs and labels
inputs = digits.images # x_i
labels = digits.target # t_i

print('inputs = (n_inputs, pixel_width, pixel_height) =',inputs.shape)
print('labels = (n_inputs) =',labels.shape)

inputs = (n_inputs, pixel_width, pixel_height) = (1797, 8, 8)
labels = (n_inputs) = (1797,)

Here we reshape images so that we have Design matrix composed of 64 pixels. We also print a
few examples of numbers.

[2]: # flatten the image
the value -1 means dimension is inferred from the remaining dimensions: 8x8 =␣

↪64
n_inputs,nx,ny = inputs.shape
inputs = inputs.reshape(n_inputs, nx*ny)
print('X = (n_inputs, n_features) =', inputs.shape)

choose some random images to display
random_indices = random.choice(range(n_inputs), size=5)

for i,image in enumerate(digits.images[random_indices]):
plt.subplot(1, 5, i+1)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title("Label: %d" % digits.target[random_indices[i]])

plt.show()

X = (n_inputs, n_features) = (1797, 64)

7

First we split the data in 80% training and 20% testing data. Wehich data is training and testing
should be choosen at random.

[3]: from sklearn.model_selection import train_test_split

one-liner from scikit-learn library
train_size = 0.8
X_train, X_test, Y_train, Y_test = train_test_split(inputs, labels,␣

↪train_size=train_size,test_size=1-train_size)

equivalently in numpy
def train_test_split_numpy(inputs, labels, train_size):

n_inputs = len(inputs)
inputs_shuffled = inputs.copy()
labels_shuffled = labels.copy()
random.shuffle(inputs_shuffled)
random.shuffle(labels_shuffled)

train_end = int(n_inputs*train_size)
X_train, X_test = inputs_shuffled[:train_end], inputs_shuffled[train_end:]
Y_train, Y_test = labels_shuffled[:train_end], labels_shuffled[train_end:]

return X_train, X_test, Y_train, Y_test
#X_train, X_test, Y_train, Y_test = train_test_split_numpy(inputs, labels,␣

↪train_size, test_size)

print("Number of training images: " + str(len(X_train)))
print("Number of test images: " + str(len(X_test)))

Number of training images: 1437
Number of test images: 360

The input and output data have dimensions

𝑋 ∈ [𝑛 × 64] (32)
𝑡 ∈ [𝑛]. (33)

It is easier to change the output vector to so-called hot representation, in which 𝑦 = 0 translates
into 𝑦 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] and 𝑦 = 2 into 𝑦 = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], etc.

8

In this way we can use equations for binary choice of 10 chategories. The output vector Y_onehot
is going to be of dimension 𝑛 × 10, rather than 𝑛.
The function to_categorical_numpy implements the hot representation.

[4]: # to categorical turns our integer vector into a onehot representation
def to_categorical_numpy(integer_vector): # integer_vector[n_inputs] contains␣

↪number between 0...9
n_inputs = len(integer_vector) # inputs
n_categories = max(integer_vector) + 1 # 10 chategories
onehot_vector = zeros((n_inputs, n_categories),dtype=int)
onehot_vector[range(n_inputs), integer_vector] = 1
return onehot_vector

[5]: integer_vector=[3,5,4,8,0]
to_categorical_numpy(integer_vector)

[5]: array([[0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0]])

[6]: Y_train_onehot, Y_test_onehot = to_categorical_numpy(Y_train),␣
↪to_categorical_numpy(Y_test)

Figure: NN for recognizing digits.

As said before, the input and the adjusted hot output data have dimensions

𝑋 ∈ [𝑛 × 64] (34)
𝑌 ∈ [𝑛 × 10]. (35)

We will use 50 neurons in the hidden layer, and we have 10 categories, hence our weights will have
dimenions:

𝑤(1) ∈ [64 × 50] (36)
𝑏(1) ∈ [50] (37)
𝑤(2) ∈ [50 × 10] (38)
𝑏(2) ∈ 10 (39)
𝑎(2) ∈ [𝑛 × 10] (40)

The equations for our NN models are:

𝑧(1) = 𝑋𝑤(1) + 𝑏(1) ∈ [𝑛 × 50] (41)
𝑎(1) = 𝑓 (1)(𝑧(1)) ∈ [𝑛 × 50] (42)
𝑧(2) = 𝑎(1)𝑤(2) + 𝑏(2) ∈ [𝑛 × 10] (43)
𝑎(2) = 𝑓 (2)(𝑧(2)) ∈ [𝑛 × 10] (44)

9

where
𝑓 (1)(𝑧) = 1/(exp(−𝑧) + 1)

and
𝑓 (2)(𝑧𝑐) = exp 𝑧𝑐

∑9
𝑐′=0 exp 𝑧𝑐′

Note that the output layer uses the softmax activation function, because we have the multiple-
choice output. The cost function in this case has to maximize the cross entropy, i.e., the probability
that the model gets all the answers correct, which is given by

𝑃(𝐷|{𝑤, 𝑏}) =
𝑛

∏
𝑖=1

9
∏
𝑐=0

𝑃(𝑦𝑖𝑐 = 1)𝑦𝑖𝑐(1 − 𝑃(𝑦𝑖𝑐 = 1)1−𝑦𝑖𝑐 (45)

here 𝑦𝑖𝑐 can only take values of 0 or 1, and 𝑐 runs from 0 to 9, and 𝑖 runs over all input data
𝑛. Here 𝐷 is the collection of all input data. This is facilitated by the hot vector representation
implemented above, in which 𝑦 ∈ [0, 1, ...9] is changed to hot representation with 𝑦𝑖𝑐.

To maximize 𝑃(𝐷|{𝑤, 𝑏}) we minimize 𝐶({𝑤, 𝑏}) = − log(𝑃 (𝐷|{𝑤, 𝑏})). The cost function therefore
is

𝐶({𝑤, 𝑏}) = − ∑
𝑖,𝑐

𝑦𝑖𝑐 log(𝑃𝑖𝑐) + (1 − 𝑦𝑖𝑐) log(1 − 𝑃𝑖𝑐) (46)

Note that 𝑎(2)
𝑖𝑐 ≡ 𝑃𝑖𝑐 is the result of our NN.

Later we we also regularize the cost function with 𝐿2 metric in the following way:

𝐶({𝑤, 𝑏}) = − ∑
𝑖,𝑐

𝑦𝑖𝑐 log(𝑃𝑖𝑐) + (1 − 𝑦𝑖𝑐) log(1 − 𝑃𝑖𝑐) + 𝜆
2 ∑

ℎ𝑐
(𝑤(2)

ℎ𝑐)2 + 𝜆
2 ∑

𝑝ℎ
(𝑤(1)

𝑝ℎ)2 (47)

First we create a random configuration of weights.

[7]: # building our neural network
n_inputs, n_features = X_train.shape
n_hidden_neurons = 50
n_categories = 10

we make the weights normally distributed using numpy.random.randn
def GiveStartingRandomWeights():

random.seed(0)
weights and bias in the hidden layer
W_1 = random.randn(n_features, n_hidden_neurons)
b_1 = zeros(n_hidden_neurons) + 0.01

weights and bias in the output layer
W_2 = random.randn(n_hidden_neurons, n_categories)
b_2 = zeros(n_categories) + 0.01
return (W_1, b_1, W_2, b_2)

Next we evaluate NN by forward algorithm, and check the accuracy of its predictions.

10

[8]: def mfermi(x):
return 1/(1 + exp(-x))

def feed_forward(X, all_weights):
"identical to feed_forward, except we also return a_1, i.e, hidden layer a"
W_1, b_1, W_2, b_2 = all_weights
weighted sum of inputs to the hidden layer
z_1 = matmul(X, W_1) + b_1
activation in the hidden layer
a_1 = mfermi(z_1)
weighted sum of inputs to the output layer
z_2 = matmul(a_1, W_2) + b_2
softmax output
axis 0 holds each input and axis 1 the probabilities of each category
exp_term = exp(z_2)
probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)
for backpropagation need activations in hidden and output layers
return a_1, probabilities

we obtain a prediction by taking the class with the highest likelihood
def predict(X, all_weights):

a_1, probabilities = feed_forward(X, all_weights)
return (probabilities,argmax(probabilities, axis=1))

Checking prediction of NN for one data point. The weights are not yet optimized.

[9]: all_weights = GiveStartingRandomWeights()
(probabilities,predictions) = predict(X_train, all_weights)

print("probabilities = (n_inputs, n_categories) = " + str(probabilities.shape))
print("probability that image 0 is in category 0,1,2,...,9 = \n" +␣

↪str(probabilities[0]))
print("probabilities sum up to: " + str(probabilities[0].sum()))
print()

print("predictions = (n_inputs) = " + str(predictions.shape))
print("prediction for image 0: " + str(predictions[0]))
print("correct label for image 0: " + str(Y_train[0]))

probabilities = (n_inputs, n_categories) = (1437, 10)
probability that image 0 is in category 0,1,2,…,9 =
[2.23785373e-07 1.47533958e-01 7.28910767e-04 3.32202888e-05
4.42269923e-05 1.06343900e-04 7.66939998e-03 8.14604377e-01
4.64970935e-07 2.92788746e-02]
probabilities sum up to: 1.0

predictions = (n_inputs) = (1437,)

11

prediction for image 0: 7
correct label for image 0: 6

We include accuracy_score from sklearn to meassure how large percentage of data is correctly
predicted.

[10]: from sklearn.metrics import accuracy_score

(probabilities,predictions) = predict(X_train, all_weights)
print("Old accuracy on training data:", accuracy_score(predictions, Y_train))

Old accuracy on training data: 0.04314544189283229

Next we implement gradients, which are used for back-propagation in function backpropagation.

The gradients are somewhat different than derived above because the cost function is obtained from
the cross entropy function. Lets firts use cost function 𝐶 withouth regularization 𝜆.
The gradients are:

𝜕𝐶
𝜕𝑤(2)

𝑗𝑐
= − ∑

𝑖
(𝑦𝑖𝑐

𝑃𝑖𝑐
− 1 − 𝑦𝑖𝑐

1 − 𝑃𝑖𝑐
) 𝜕𝑃𝑖𝑐

𝜕𝑤(2)
𝑗𝑐

= − ∑
𝑖

𝑦𝑖𝑐 − 𝑃𝑖𝑐
𝑃𝑖𝑐(1 − 𝑃𝑖𝑐)

𝜕𝑃𝑖𝑐
𝜕𝑤(2)

𝑗𝑐
(48)

Next
𝜕𝑃𝑖𝑐
𝜕𝑤(2)

𝑗𝑐
= 𝜕𝑃𝑖𝑐

𝜕𝑧𝑖𝑐

𝜕𝑧𝑖𝑐
𝜕𝑤𝑗𝑐

Since 𝑃𝑖𝑐 = 𝑓 (2)(𝑧(2)
𝑖𝑐) and 𝑧(2)

𝑖𝑐 = ∑𝑗∈ℎ𝑖𝑑𝑑𝑒𝑛 𝑎(1)
𝑖𝑗 𝑤(2)

𝑗𝑐 + 𝑏(2)
𝑐 we have

𝜕𝑃𝑖𝑐
𝜕𝑤(2)

𝑗𝑐
= 𝑃𝑖𝑐(1 − 𝑃𝑖𝑐)𝑎(1)

𝑖𝑗

which finally gives

𝜕𝐶
𝜕𝑤(2)

𝑗𝑐
= ∑

𝑖
(𝑃𝑖𝑐 − 𝑦𝑖𝑐)𝑎(1)

𝑖𝑗 = 𝑎(1)𝑇 (𝑎(2) − 𝑌) (49)

where we took into account that 𝑎(2)
𝑖𝑐 = 𝑃𝑖𝑐 and 𝑌𝑖𝑐 = 𝑦𝑖𝑐. Similarly we can see that

𝜕𝐶
𝜕𝑏(2)

𝑐
= ∑

𝑖
(𝑃𝑖𝑐 − 𝑦𝑖𝑐) (50)

Next we evaluate the derivative in the hidden layer, i.e.,

𝜕𝐶
𝜕𝑤(1)

𝑝ℎ
= ∑

𝑖

𝜕𝐶
𝜕𝑃𝑖𝑐

𝜕𝑃𝑖𝑐
𝜕𝑧(2)

𝑖𝑐

𝜕𝑧(2)
𝑖𝑐

𝜕𝑎(1)
𝑖ℎ

𝜕𝑎(1)
𝑖ℎ

𝜕𝑧(1)
𝑖ℎ

𝜕𝑧(1)
𝑖ℎ

𝜕𝑤(1)
𝑝ℎ

(51)

which comes from the fact that 𝑃𝑖𝑐 = 𝑓 (2)(𝑧(2)
𝑖𝑐), 𝑧(2)

𝑖𝑐 = ∑ℎ 𝑎(1)
𝑖ℎ 𝑤(2)

ℎ𝑐 + 𝑏(2)
𝑐 and 𝑎(1)

𝑖ℎ = 𝑓 (1)(𝑧(1)
𝑖ℎ) and

𝑧(1)
𝑖ℎ = ∑𝑝 𝑋𝑖𝑝𝑤(1)

𝑝ℎ + 𝑏ℎ. We see that 𝜕𝐶
𝜕𝑃𝑖𝑐

= (𝑃𝑖𝑐 − 𝑦𝑖𝑐)/(𝑃𝑖𝑐(1 − 𝑃𝑖𝑐)), further 𝜕𝑃𝑖𝑐
𝜕𝑧(2)

𝑖𝑐
= 𝑃𝑖𝑐(1 − 𝑃𝑖𝑐),

𝜕𝑧(2)
𝑖𝑐

𝜕𝑎(1)
𝑖ℎ

= 𝑤(2)
ℎ𝑐 ,

𝜕𝑎(1)
𝑖ℎ

𝜕𝑧(1)
𝑖ℎ

= 𝑎(1)
𝑖ℎ (1 − 𝑎(1)

𝑖ℎ), 𝜕𝑧(1)
𝑖ℎ

𝜕𝑤(1)
𝑝ℎ

= 𝑋𝑖𝑝.

12

Taking all this into account, we get

𝜕𝐶
𝜕𝑤(1)

𝑝ℎ
= ∑

𝑖
𝑋𝑖𝑝𝑎(1)

𝑖ℎ (1 − 𝑎(1)
𝑖ℎ) ∑

𝑐
(𝑃𝑖𝑐 − 𝑦𝑖𝑐)𝑤(2)

ℎ𝑐 (52)

which can also be written as

𝜕𝐶
𝜕𝑤(1)

𝑝ℎ
= (𝑋𝑇 (𝑎(1) ∘ (1 − 𝑎(1)) ∘ (𝑎(2) − 𝑌)(𝑤(2))𝑇))𝑝ℎ (53)

where we introduced elementwise product ∘ defined by 𝑐𝑖ℎ = 𝑎𝑖ℎ𝑏𝑖ℎ as 𝑐 = 𝑎 ∘ 𝑏 . Similarly

𝜕𝐶
𝜕𝑏(1)

ℎ
= ∑

𝑖,ℎ
𝑎(1)

𝑖ℎ (1 − 𝑎(1)
𝑖ℎ) ∑

𝑐
(𝑃𝑖𝑐 − 𝑦𝑖𝑐)𝑤(2)

ℎ𝑐 (54)

Finally, when 𝜆 is nonzero, we will just add to derivatives

𝜕𝐶
𝜕𝑤(1)

𝑝ℎ
+ = 𝜆𝑤(1)

𝑝ℎ (55)

𝜕𝐶
𝜕𝑤(2)

𝑗𝑐
+ = 𝜆𝑤(2)

𝑗𝑐 (56)

[11]: def backpropagation(X, Y, all_weights):
a_1, probabilities = feed_forward(X, all_weights)
W_1, b_1, W_2, b_2 = all_weights
error in the output layer
error_output = probabilities - Y
error in the hidden layer
error_hidden = matmul(error_output, W_2.T) * a_1 * (1 - a_1)

gradients for the output layer
dW2 = matmul(a_1.T, error_output)
dB2 = sum(error_output, axis=0)

gradient for the hidden layer
dW1 = matmul(X.T, error_hidden)
dB1 = sum(error_hidden, axis=0)

return dW2, dB2, dW1, dB1

[13]: dW2, dB2, dW1, dB1 = backpropagation(X_train, Y_train_onehot, all_weights)
print('shapes of gradients=', dW2.shape, dB2.shape, dW1.shape, dB1.shape)

shapes of gradients= (50, 10) (10,) (64, 50) (50,)

First we use simple gradient descendent method with fixed learning rate 𝛾=eta. We evaluate
gradient num_iterations-times and move towards local minimum.

13

[14]: def SimpleGradientMethod(X_train, Y_train, all_weights, eta, lmbd,␣
↪num_iterations):

(W_1,b_1,W_2,b_2) = all_weights
for i in range(num_iterations):

calculate gradients
dW_2, dB_2, dW_1, dB_1 = backpropagation(X_train, Y_train,␣

↪[W_1,b_1,W_2,b_2])
regularization term gradients
dW_2 += lmbd * W_2
dW_1 += lmbd * W_1
update weights and biases
W_1 -= eta * dW_1
b_1 -= eta * dB_1
W_2 -= eta * dW_2
b_2 -= eta * dB_2

return (W_1,b_1,W_2,b_2)

We also add regularization to cost function in the form of 𝜆||𝑤||22. The precision after 100 steps is
barely improved.

[15]: eta = 0.01
lmbd = 0.01
num_iterations=100

all_weights = GiveStartingRandomWeights()
all_weights = SimpleGradientMethod(X_train, Y_train_onehot, all_weights, eta,␣

↪lmbd, num_iterations)

error=accuracy_score(predict(X_train,all_weights)[1],Y_train)
print('Accuracy on training data: ', error)

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))

Accuracy on training data: 0.10438413361169102

Next we implement stochastic gradient descent (SGD), which takes a random subset of data
(of size batch_size), and we compute gradient only for the subset of points. We then move in the
steepest descent direction for only this subset. The randomness introduced this way decreases the
chance that our opmization scheme gets stuck in a local minima.

If the size of the minibatches are small relative to the number of datapoints (𝑀 < 𝑛), the compu-
tation of the gradient is much cheaper since we sum over the datapoints in the 𝑘 − 𝑡ℎ minibatch
and not all 𝑛 datapoints.

[16]: def StochasticGradientMethod(X_train, Y_train, all_weights, eta, lmbd,␣
↪batch_size, epochs):

(W_1,b_1,W_2,b_2) = all_weights

14

data_indices = arange(len(X_train))
iterations = len(X_train) // batch_size
print('Number of iterations=', iterations)
for i in range(epochs):

for j in range(iterations):
chosen_datapoints = random.choice(data_indices, size=batch_size,␣

↪replace=False)
minibatch training data
X_batch = X_train[chosen_datapoints]
Y_batch = Y_train[chosen_datapoints]
dW_2, dB_2, dW_1, dB_1 = backpropagation(X_batch, Y_batch,␣

↪[W_1,b_1,W_2,b_2])
regularization term gradients
dW_2 += lmbd * W_2
dW_1 += lmbd * W_1
update weights and biases
W_1 -= eta * dW_1
b_1 -= eta * dB_1
W_2 -= eta * dW_2
b_2 -= eta * dB_2

return (W_1,b_1,W_2,b_2)

Finally we use SG method for learning method 𝛾=eta=0.01 and 𝜆 = 0.1 wih batch_size=100.
The number of iteration over the minibathces (epochs) is also choosen at 100. This gives excellent
prediction over 98%. A human can typically read with accuracy 98%.

[17]: eta = 0.01
lmbd = 0.1
epochs = 100
batch_size = 100

all_weights = GiveStartingRandomWeights()

all_weights = StochasticGradientMethod(X_train, Y_train_onehot, all_weights,␣
↪eta, lmbd, batch_size, epochs)

error=accuracy_score(predict(X_train,all_weights)[1],Y_train)
error2=accuracy_score(predict(X_test,all_weights)[1],Y_test)
print('Accuracy on training data: ', error, error2)

Number of iterations= 14
Accuracy on training data: 0.9937369519832986 0.9805555555555555

1.1.3 Adjust hyperparameters

We now perform a grid search to find the optimal hyperparameters for the network.
Note that we are only using 1 layer with 50 neurons, and human performance is estimated to be

15

around 98% (2% error rate).

[18]: eta_vals = logspace(-5, 1, 7)
lmbd_vals = logspace(-5, 1, 7)
store the models for later use
DNN_numpy = zeros((len(eta_vals), len(lmbd_vals)), dtype=object)

grid search
for i, eta in enumerate(eta_vals):

for j, lmbd in enumerate(lmbd_vals):

all_weights = GiveStartingRandomWeights()
all_weights = StochasticGradientMethod(X_train, Y_train_onehot,␣

↪all_weights, eta, lmbd, batch_size, epochs)

error=accuracy_score(predict(X_train,all_weights)[1],Y_train)
error2=accuracy_score(predict(X_test,all_weights)[1],Y_test)
DNN_numpy[i][j] = error

#test_predict = dnn.predict(X_test)

print('Learning rate=', eta, 'Lambda=', lmbd, 'Accuracy=', error,␣
↪error2)

Number of iterations= 14
Learning rate= 1e-05 Lambda= 1e-05 Accuracy= 0.13569937369519833
0.18055555555555555
Number of iterations= 14
Learning rate= 1e-05 Lambda= 0.0001 Accuracy= 0.13569937369519833
0.18055555555555555
Number of iterations= 14
Learning rate= 1e-05 Lambda= 0.001 Accuracy= 0.13569937369519833
0.18055555555555555
Number of iterations= 14
Learning rate= 1e-05 Lambda= 0.01 Accuracy= 0.13569937369519833
0.18055555555555555
Number of iterations= 14
Learning rate= 1e-05 Lambda= 0.1 Accuracy= 0.13569937369519833
0.18055555555555555
Number of iterations= 14
Learning rate= 1e-05 Lambda= 1.0 Accuracy= 0.13569937369519833
0.18055555555555555
Number of iterations= 14
Learning rate= 1e-05 Lambda= 10.0 Accuracy= 0.13848295059151008
0.18055555555555555
Number of iterations= 14
Learning rate= 0.0001 Lambda= 1e-05 Accuracy= 0.6089074460681977
0.5833333333333334

16

Number of iterations= 14
Learning rate= 0.0001 Lambda= 0.0001 Accuracy= 0.6089074460681977
0.5833333333333334
Number of iterations= 14
Learning rate= 0.0001 Lambda= 0.001 Accuracy= 0.6089074460681977
0.5833333333333334
Number of iterations= 14
Learning rate= 0.0001 Lambda= 0.01 Accuracy= 0.6089074460681977
0.5805555555555556
Number of iterations= 14
Learning rate= 0.0001 Lambda= 0.1 Accuracy= 0.6116910229645094
0.5805555555555556
Number of iterations= 14
Learning rate= 0.0001 Lambda= 1.0 Accuracy= 0.6450939457202505
0.6083333333333333
Number of iterations= 14
Learning rate= 0.0001 Lambda= 10.0 Accuracy= 0.8545581071677105
0.8138888888888889
Number of iterations= 14
Learning rate= 0.001 Lambda= 1e-05 Accuracy= 0.9617258176757133
0.8916666666666667
Number of iterations= 14
Learning rate= 0.001 Lambda= 0.0001 Accuracy= 0.9617258176757133
0.8916666666666667
Number of iterations= 14
Learning rate= 0.001 Lambda= 0.001 Accuracy= 0.9617258176757133
0.8916666666666667
Number of iterations= 14
Learning rate= 0.001 Lambda= 0.01 Accuracy= 0.9617258176757133
0.8944444444444445
Number of iterations= 14
Learning rate= 0.001 Lambda= 0.1 Accuracy= 0.9624217118997912 0.9055555555555556
Number of iterations= 14
Learning rate= 0.001 Lambda= 1.0 Accuracy= 0.9826026443980515 0.95
Number of iterations= 14
Learning rate= 0.001 Lambda= 10.0 Accuracy= 0.942936673625609 0.9305555555555556
Number of iterations= 14
Learning rate= 0.01 Lambda= 1e-05 Accuracy= 0.9965205288796103
0.9361111111111111
Number of iterations= 14
Learning rate= 0.01 Lambda= 0.0001 Accuracy= 0.9972164231036882
0.9527777777777777
Number of iterations= 14
Learning rate= 0.01 Lambda= 0.001 Accuracy= 0.9979123173277662
0.9555555555555556
Number of iterations= 14
Learning rate= 0.01 Lambda= 0.01 Accuracy= 0.9979123173277662 0.9472222222222222
Number of iterations= 14

17

Learning rate= 0.01 Lambda= 0.1 Accuracy= 0.9937369519832986 0.9805555555555555
Number of iterations= 14
Learning rate= 0.01 Lambda= 1.0 Accuracy= 0.8176757132915797 0.7805555555555556
Number of iterations= 14
Learning rate= 0.01 Lambda= 10.0 Accuracy= 0.20668058455114824
0.18333333333333332
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))

Learning rate= 0.1 Lambda= 1e-05 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))

Learning rate= 0.1 Lambda= 0.0001 Accuracy= 0.10368823938761308
0.08888888888888889
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))

Learning rate= 0.1 Lambda= 0.001 Accuracy= 0.0953375086986778 0.125
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))

Learning rate= 0.1 Lambda= 0.01 Accuracy= 0.10438413361169102
0.07777777777777778

18

Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))

Learning rate= 0.1 Lambda= 0.1 Accuracy= 0.09394572025052192 0.11666666666666667
Number of iterations= 14
Learning rate= 0.1 Lambda= 1.0 Accuracy= 0.10160055671537926 0.09166666666666666
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))

Learning rate= 0.1 Lambda= 10.0 Accuracy= 0.10160055671537926
0.09166666666666666
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 1.0 Lambda= 1e-05 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 1.0 Lambda= 0.0001 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

19

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 1.0 Lambda= 0.001 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 1.0 Lambda= 0.01 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 1.0 Lambda= 0.1 Accuracy= 0.10438413361169102 0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))

Learning rate= 1.0 Lambda= 1.0 Accuracy= 0.10438413361169102 0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)

20

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 1.0 Lambda= 10.0 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 10.0 Lambda= 1e-05 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 10.0 Lambda= 0.0001 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 10.0 Lambda= 0.001 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

21

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 10.0 Lambda= 0.01 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 10.0 Lambda= 0.1 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 10.0 Lambda= 1.0 Accuracy= 0.10438413361169102
0.07777777777777778
Number of iterations= 14

/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:2
: RuntimeWarning: overflow encountered in exp

return 1/(1 + exp(-x))
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
5: RuntimeWarning: overflow encountered in exp

exp_term = exp(z_2)
/var/folders/j8/d9m3r0zx7j37l3ktfl_n1xw00000gn/T/ipykernel_20664/1438300027.py:1
6: RuntimeWarning: invalid value encountered in divide

probabilities = exp_term/sum(exp_term, axis=1, keepdims=True)

Learning rate= 10.0 Lambda= 10.0 Accuracy= 0.10438413361169102

22

0.07777777777777778

[]:

23

	Deep Learning methods and Neural Networks
	Simple example OR and XOR gate
	Back propagation and automatic differentiation
	Final algorithm
	Example code from MNIST dataset on handwritten numbers
	Adjust hyperparameters

